Contents
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
use crate::coord::ranged1d::types::RangedCoordusize;
use crate::coord::ranged1d::{
AsRangedCoord, DiscreteRanged, KeyPointHint, NoDefaultFormatting, Ranged, ValueFormatter,
};
use std::cmp::{Ordering, PartialOrd};
use std::marker::PhantomData;
use std::ops::{Add, Range, Sub};
/// The type marker used to denote the rounding method.
/// Since we are mapping any range to a discrete range thus not all values are
/// perfect mapped to the grid points. In this case, this type marker gives hints
/// for the linspace coord for how to treat the non-grid-point values.
pub trait LinspaceRoundingMethod<V> {
/// Search for the value within the given values array and rounding method
///
/// - `values`: The values we want to search
/// - `target`: The target value
/// - `returns`: The index if we found the matching item, otherwise none
fn search(values: &[V], target: &V) -> Option<usize>;
}
/// This type marker means linspace do the exact match for searching
/// which means if there's no value strictly equals to the target, the coord spec
/// reports not found result.
#[derive(Clone)]
pub struct Exact<V>(PhantomData<V>);
impl<V: PartialOrd> LinspaceRoundingMethod<V> for Exact<V> {
fn search(values: &[V], target: &V) -> Option<usize> {
values.iter().position(|x| target == x)
}
}
/// This type marker means we round up the value. Which means we try to find a
/// minimal value in the values array that is greater or equal to the target.
#[derive(Clone)]
pub struct Ceil<V>(PhantomData<V>);
impl<V: PartialOrd> LinspaceRoundingMethod<V> for Ceil<V> {
fn search(values: &[V], target: &V) -> Option<usize> {
let ascending = if values.len() < 2 {
true
} else {
values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
};
match values.binary_search_by(|probe| {
if ascending {
probe.partial_cmp(target).unwrap()
} else {
target.partial_cmp(probe).unwrap()
}
}) {
Ok(idx) => Some(idx),
Err(idx) => {
let offset = if ascending { 0 } else { 1 };
if idx < offset || idx >= values.len() + offset {
return None;
}
Some(idx - offset)
}
}
}
}
/// This means we use the round down. Which means we try to find a
/// maximum value in the values array that is less or equal to the target.
#[derive(Clone)]
pub struct Floor<V>(PhantomData<V>);
impl<V: PartialOrd> LinspaceRoundingMethod<V> for Floor<V> {
fn search(values: &[V], target: &V) -> Option<usize> {
let ascending = if values.len() < 2 {
true
} else {
values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
};
match values.binary_search_by(|probe| {
if ascending {
probe.partial_cmp(target).unwrap()
} else {
target.partial_cmp(probe).unwrap()
}
}) {
Ok(idx) => Some(idx),
Err(idx) => {
let offset = if ascending { 1 } else { 0 };
if idx < offset || idx >= values.len() + offset {
return None;
}
Some(idx - offset)
}
}
}
}
/// This means we use the rounding. Which means we try to find the closet
/// value in the array that matches the target
#[derive(Clone)]
pub struct Round<V, S>(PhantomData<(V, S)>);
impl<V, S> LinspaceRoundingMethod<V> for Round<V, S>
where
V: Add<S, Output = V> + PartialOrd + Sub<V, Output = S> + Clone,
S: PartialOrd + Clone,
{
fn search(values: &[V], target: &V) -> Option<usize> {
let ascending = if values.len() < 2 {
true
} else {
values[0].partial_cmp(&values[1]) == Some(Ordering::Less)
};
match values.binary_search_by(|probe| {
if ascending {
probe.partial_cmp(target).unwrap()
} else {
target.partial_cmp(probe).unwrap()
}
}) {
Ok(idx) => Some(idx),
Err(idx) => {
if idx == 0 {
return Some(0);
}
if idx == values.len() {
return Some(idx - 1);
}
let left_delta = if ascending {
target.clone() - values[idx - 1].clone()
} else {
values[idx - 1].clone() - target.clone()
};
let right_delta = if ascending {
values[idx].clone() - target.clone()
} else {
target.clone() - values[idx].clone()
};
if left_delta.partial_cmp(&right_delta) == Some(Ordering::Less) {
Some(idx - 1)
} else {
Some(idx)
}
}
}
}
}
/// The coordinate combinator that transform a continous coordinate to a discrete coordinate
/// to a discrete coordinate by a giving step.
///
/// For example, range `0f32..100f32` is a continuous coordinate, thus this prevent us having a
/// histogram on it since Plotters doesn't know how to segment the range into buckets.
/// In this case, to get a histogram, we need to split the original range to a
/// set of discrete buckets (for example, 0.5 per bucket).
///
/// The linspace decorate abstracting this method. For example, we can have a discrete coordinate:
/// `(0f32..100f32).step(0.5)`.
///
/// Linspace also supports different types of bucket matching method - This configuration alters the behavior of
/// [DiscreteCoord::index_of](../trait.DiscreteCoord.html#tymethod.index_of) for Linspace coord spec
/// - **Flooring**, the value falls into the nearst bucket smaller than it. See [Linspace::use_floor](struct.Linspace.html#method.use_floor)
/// - **Round**, the value falls into the nearst bucket. See [Linearspace::use_round](struct.Linspace.html#method.use_round)
/// - **Ceiling**, the value falls into the nearst bucket larger than itself. See [Linspace::use_ceil](struct.Linspace.html#method.use_ceil)
/// - **Exact Matchting**, the value must be exactly same as the butcket value. See [Linspace::use_exact](struct.Linspace.html#method.use_exact)
#[derive(Clone)]
pub struct Linspace<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>>
where
T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
step: S,
inner: T,
grid_value: Vec<T::ValueType>,
_phatom: PhantomData<R>,
}
impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Linspace<T, S, R>
where
T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
fn compute_grid_values(&mut self) {
let range = self.inner.range();
match (
range.start.partial_cmp(&range.end),
(range.start.clone() + self.step.clone()).partial_cmp(&range.end),
) {
(Some(a), Some(b)) if a != b || a == Ordering::Equal || b == Ordering::Equal => (),
(Some(a), Some(_)) => {
let mut current = range.start;
while current.partial_cmp(&range.end) == Some(a) {
self.grid_value.push(current.clone());
current = current + self.step.clone();
}
}
_ => (),
}
}
/// Set the linspace use the round up method for value matching
///
/// - **returns**: The newly created linspace that uses new matching method
pub fn use_ceil(self) -> Linspace<T, S, Ceil<T::ValueType>> {
Linspace {
step: self.step,
inner: self.inner,
grid_value: self.grid_value,
_phatom: PhantomData,
}
}
/// Set the linspace use the round down method for value matching
///
/// - **returns**: The newly created linspace that uses new matching method
pub fn use_floor(self) -> Linspace<T, S, Floor<T::ValueType>> {
Linspace {
step: self.step,
inner: self.inner,
grid_value: self.grid_value,
_phatom: PhantomData,
}
}
/// Set the linspace use the best match method for value matching
///
/// - **returns**: The newly created linspace that uses new matching method
pub fn use_round(self) -> Linspace<T, S, Round<T::ValueType, S>>
where
T::ValueType: Sub<T::ValueType, Output = S>,
S: PartialOrd,
{
Linspace {
step: self.step,
inner: self.inner,
grid_value: self.grid_value,
_phatom: PhantomData,
}
}
/// Set the linspace use the exact match method for value matching
///
/// - **returns**: The newly created linspace that uses new matching method
pub fn use_exact(self) -> Linspace<T, S, Exact<T::ValueType>>
where
T::ValueType: Sub<T::ValueType, Output = S>,
S: PartialOrd,
{
Linspace {
step: self.step,
inner: self.inner,
grid_value: self.grid_value,
_phatom: PhantomData,
}
}
}
impl<T, R, S, RM> ValueFormatter<T> for Linspace<R, S, RM>
where
R: Ranged<ValueType = T> + ValueFormatter<T>,
RM: LinspaceRoundingMethod<T>,
T: Add<S, Output = T> + PartialOrd + Clone,
S: Clone,
{
fn format(value: &T) -> String {
R::format(value)
}
}
impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> Ranged for Linspace<T, S, R>
where
T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
type FormatOption = NoDefaultFormatting;
type ValueType = T::ValueType;
fn range(&self) -> Range<T::ValueType> {
self.inner.range()
}
fn map(&self, value: &T::ValueType, limit: (i32, i32)) -> i32 {
self.inner.map(value, limit)
}
fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<T::ValueType> {
if self.grid_value.is_empty() {
return vec![];
}
let idx_range: RangedCoordusize = (0..(self.grid_value.len() - 1)).into();
idx_range
.key_points(hint)
.into_iter()
.map(|x| self.grid_value[x].clone())
.collect()
}
}
impl<T: Ranged, S: Clone, R: LinspaceRoundingMethod<T::ValueType>> DiscreteRanged
for Linspace<T, S, R>
where
T::ValueType: Add<S, Output = T::ValueType> + PartialOrd + Clone,
{
fn size(&self) -> usize {
self.grid_value.len()
}
fn index_of(&self, value: &T::ValueType) -> Option<usize> {
R::search(self.grid_value.as_ref(), value)
}
fn from_index(&self, idx: usize) -> Option<T::ValueType> {
self.grid_value.get(idx).map(Clone::clone)
}
}
/// Makes a linspace coordinate from the ranged coordinates.
pub trait IntoLinspace: AsRangedCoord {
/// Set the step value, make a linspace coordinate from the given range.
/// By default the matching method use the exact match
///
/// - `val`: The step value
/// - **returns*: The newly created linspace
fn step<S: Clone>(self, val: S) -> Linspace<Self::CoordDescType, S, Exact<Self::Value>>
where
Self::Value: Add<S, Output = Self::Value> + PartialOrd + Clone,
{
let mut ret = Linspace {
step: val,
inner: self.into(),
grid_value: vec![],
_phatom: PhantomData,
};
ret.compute_grid_values();
ret
}
}
impl<T: AsRangedCoord> IntoLinspace for T {}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_float_linspace() {
let coord = (0.0f64..100.0f64).step(0.1);
assert_eq!(coord.map(&23.12, (0, 10000)), 2312);
assert_eq!(coord.range(), 0.0..100.0);
assert_eq!(coord.key_points(100000).len(), 1001);
assert_eq!(coord.size(), 1001);
assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230));
assert!((coord.from_index(230).unwrap() - 23.0).abs() < 1e-5);
}
#[test]
fn test_rounding_methods() {
let coord = (0.0f64..100.0f64).step(1.0);
assert_eq!(coord.index_of(&1.0), Some(1));
assert_eq!(coord.index_of(&1.2), None);
let coord = coord.use_floor();
assert_eq!(coord.index_of(&1.0), Some(1));
assert_eq!(coord.index_of(&1.2), Some(1));
assert_eq!(coord.index_of(&23.9), Some(23));
assert_eq!(coord.index_of(&10000.0), Some(99));
assert_eq!(coord.index_of(&-1.0), None);
let coord = coord.use_ceil();
assert_eq!(coord.index_of(&1.0), Some(1));
assert_eq!(coord.index_of(&1.2), Some(2));
assert_eq!(coord.index_of(&23.9), Some(24));
assert_eq!(coord.index_of(&10000.0), None);
assert_eq!(coord.index_of(&-1.0), Some(0));
let coord = coord.use_round();
assert_eq!(coord.index_of(&1.0), Some(1));
assert_eq!(coord.index_of(&1.2), Some(1));
assert_eq!(coord.index_of(&1.7), Some(2));
assert_eq!(coord.index_of(&23.9), Some(24));
assert_eq!(coord.index_of(&10000.0), Some(99));
assert_eq!(coord.index_of(&-1.0), Some(0));
let coord = (0.0f64..-100.0f64).step(-1.0);
assert_eq!(coord.index_of(&-1.0), Some(1));
assert_eq!(coord.index_of(&-1.2), None);
let coord = coord.use_floor();
assert_eq!(coord.index_of(&-1.0), Some(1));
assert_eq!(coord.index_of(&-1.2), Some(2));
assert_eq!(coord.index_of(&-23.9), Some(24));
assert_eq!(coord.index_of(&-10000.0), None);
assert_eq!(coord.index_of(&1.0), Some(0));
let coord = coord.use_ceil();
assert_eq!(coord.index_of(&-1.0), Some(1));
assert_eq!(coord.index_of(&-1.2), Some(1));
assert_eq!(coord.index_of(&-23.9), Some(23));
assert_eq!(coord.index_of(&-10000.0), Some(99));
assert_eq!(coord.index_of(&1.0), None);
let coord = coord.use_round();
assert_eq!(coord.index_of(&-1.0), Some(1));
assert_eq!(coord.index_of(&-1.2), Some(1));
assert_eq!(coord.index_of(&-1.7), Some(2));
assert_eq!(coord.index_of(&-23.9), Some(24));
assert_eq!(coord.index_of(&-10000.0), Some(99));
assert_eq!(coord.index_of(&1.0), Some(0));
}
#[cfg(feature = "chrono")]
#[test]
fn test_duration_linspace() {
use chrono::Duration;
let coord = (Duration::seconds(0)..Duration::seconds(100)).step(Duration::milliseconds(1));
assert_eq!(coord.size(), 100_000);
assert_eq!(coord.index_of(&coord.from_index(230).unwrap()), Some(230));
assert_eq!(coord.key_points(10000000).len(), 100_000);
assert_eq!(coord.range(), Duration::seconds(0)..Duration::seconds(100));
assert_eq!(coord.map(&Duration::seconds(25), (0, 100_000)), 25000);
}
}